Review Article


Megakaryopoiesis and platelet production: insight into hematopoietic stem cell proliferation and differentiation

Tianyu Guo, Xuejun Wang, Yigong Qu, Yu Yin, Tao Jing, Qing Zhang

Abstract

Hematopoietic stem cells (HSCs) undergo successive lineage commitment steps to generate megakaryocytes (MKs) in a process referred to as megakaryopoiesis. MKs undergo a unique differentiation process involving endomitosis to eventually produce platelets. Many transcription factors participate in the regulation of this complex progress. Chemokines and other factors in the microenvironment where megakaryopoiesis and platelet production occur play vital roles in the regulation of HSC lineage commitment and MK maturation; among these factors, thrombopoietin (TPO) is the most important. Endomitosis is a vital process of MK maturation, and granules that are formed in MKs are important for platelet function. Proplatelets are firstly generated from mature MKs and then become platelets. The proplatelet production process was verified by novel studies that revealed that the mechanism is partially regulated by the invaginated membrane system (IMS), microtubules and Rho GTPases. The extracellular matrices (ECMs) and shear stress also affect and regulate the process while the mature MKs migrate from the marrow to the sub-endothelium region near the venous sinusoids leading to the release of platelets into the circulation. This review describes the entire process of megakaryopoiesis in detail, illustrates both the transcriptional and microenvironmental regulation of MKs and provides insight into platelet biogenesis.

Download Citation